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Abstract---A simple model of turbulent heat or mass transfer based on a modified form of the Reynolds 
analogy, is proposed. Equations have been derived from which heat or mass transfer coefficients, and 
temperature or concentration profiles, may be predicted at any value of NpI or Nso. In deriving the 
equations it is assumed (i) that, in pipe flow, the transport mechanism is such that there is no signifkant 
molecular transport in the turbulent core even at low N pl, and (ii) that eddy transport is a function of 
the flow pattern only. The equation is of the form 

Nst (or Ns,,) = fi_2 
V 

and e, is given both in algebraic form and as a plot of cp versus Npr (or NsO) for smooth pipes. 
Computations of N;Vu and temperature profiles agree well with experimental data. Particular 

attention is given to results at low N nr, where the assumptions made as to transport in the turbulent 
core have the greatest effect; in this region the proposed equations predict experimental results more 
closely than do other correlations. In the intermediate range of NpI or Ns, the proposed equations 
agree with other analyses, and at high values of Ns, the equations reduce to those of Lm et al. [l J 

which are in excellent agreement with experimental data. 

NOMENCLATURE 

area for heat transfer, ft2, at pipe wall, 
A, at radial distance r from the centre; 
time average concentration lb moles/ft3 ; 
cb, mixed mean concentration; CW, 
concentration at pipe wall; 
specific heat Btu/lb degF; 
molecular diffusivity of mass, ft2/h; 
fanning friction factor; 
function of Z; Jim, function of Z for 
momentum transfer ; ~(Z}H, function of 
2 for heat transfer;f(Z)o, function of 
Z for mass transfer; 
heat transfer coefficient, Btu/h ft2 
degF; 
thermal conductivity Btu/h ft degF; 
mass transfer coefficient, ft/h; 
mass transfer, lb moles/h ft2, at wall, 
Nr at radial distance r from the centre; 
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Nusselt number = (hZR)/k or equiva- 
lent mass transfer group (kc2R)/D; 
Peclet number = NR~ x Npr or equiva- 
lent mass transfer group NR~ x IV&; 
Prandtl number = (Cpp)/k; 
Reynolds number = (pub2R)/p; 
Schmidt number = p/p D ; 
Stanton number = h/(pCpub); 
Sherwood number = k&b; 
heat load, Btu/h, qm heat load at wall; 
radius of pipe, ft; 
dimensionless radius of pipe Ru*/v ; 
distance from centre of pipe, ft ; 
time averaged temperature, degF; tb, 
mixed mean temperature; tB, tempera- 
ture at y+ = 33; tc, temperature at 
Z = 0.8; tL, temperature at y* = 5; tM, 
temperature at yf = 100; tw, tempera- 
ture at wall ; 
time average axial velocity at any radial 
position ft/h; Ub, mean velocity; $.4& 
velocity at y+ = 33 ; UC, velocity at 
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2 == 0.8; ~daf ~-7 velocity at y-+ :y= 100; 
un, velocity at centre of pipe; 
friction axial velocity ft/h Z.Q -c/(fi2); 
dimensionless axial point velocity U/U* ; 
dimensionless axial point velocity u/ub; 
distance from pipe wall, ft ; 
dimensionless distance from pipe wall, 
J’U*/V ; 

dimensionless distance from the centre 
of the pipe, r/R; 
thermal diffusivity? ft*/h; 
eddy diffusivity, ftZ:h; E,W, eddy diffus- 
ivity of momentum; EII, eddy diffusivity 
of heat; ED, eddy diffusivity of mass; 
viscosity, lb/ft h; 
kinematic viscosity, fP/h: 
density, Ib/ft3; 
shear stress, lb/ft2 h2, at wall, TV at 
radial distance r from the centre. 

INTRODUCTION 

IT IS possible to predict heat and mass transfer 
coefficients, and the corresponding profiles, by 
analogy with momentum transport if a relation 
betbeen the transport processes is known or 
assumed. Reynolds’ original assumption of 
complete identity of heat and momentum trans- 
fer results in the relation Nst ==,f1/2, which is only 
true for Npr = 1, and later workers have made 
more elaborate analogies to provide equations 
of wider utility. These relations can be expressed 
as Nstgi = f/2 where p; = $(Npr,.f/2). Recent 
equations have generally been developed to 
agree with experimental data in some definite 
hfp, or Nse range and of these the equations for 
heat transfer in liquid metals and for mass 
transfer in liquids are of particular interest. In 
the liquid metal range the noteworthy relations 
are: Martinelli’s [2] equation for constant heat 
Aux, Lyon’s [3] simplified equation for the same 
condition, Seban and Shimazaki’s [4] equation 
for constant wall temperature and variable radial 
heat flux, Deissler’s [5] and Azer and Chao’s [6] 
equations for variable EH/EM. For mass transfer 
in liquids only the equations of Lin et al. [I ] and 
of Deissler [7] are sufficiently accurate to merit 
consideration. Some of these equations may be 
extended with reasonable accuracy over a wide 
range of Npr or Ns, but none is universal in its 
application. In this paper an equation is 

developed which may be used to evaluate heat 
or mass transfer profiles and the corresponding 
coefficients over the entire Npr or N& range and 
at all turbulent NR~. 

In deriving this equation only incompressible 
fluids in fully developed turbulent flow in 
circular pipes are considered and it is assumed 
that constant flux, steady state conditions apply 
so that transfer coefficients are independent of 
pipe length. 

Defining the eddy diffLIsivit~es by the equa- 
tions 

the temperature or concentration profiles may 
be obtained by substituting the relations of the 
following section into equations (2) or (3). 

VELOCITY PROFILE 

The velocity profile has been divided into four 
regions. The equations for the first two of these 
are due to Lin et al. who modified von Karman’s 
universal profile by introducing an eddy of 
magnitude E,W/Y = (~+‘/14.5)~ into the laminar 
layer. This agrees with the general considerations 
of Hinze [8] and gives good agreement with 
experimental mass transfer coefficients. The 
equations employed for the first two regions are 
therefore : 

for 0 :; _r i. <; 5 {laminar layer) 

14.5 
u I- = 

[I -+ (y+/145)]” 
._ 

3 1 i In I -- (y+/145) + (y+/14.5)” 

--- 1 
+ >,;3 tan (Wl4.5) $‘3 _+ 2/‘3\ 6 1 (4) 

and for 5 -.: y 1 ::._I 33 (transition region) 

U! = 4.77 -+- 5 In 
‘Y’ 

( 
5. + 0*041 (5j 

and 
EM v’ 

rs_: 0,959. ._ - 
5 (6) V 
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For the third region, 33 C< y+ *:-I R l/5 

u+ -7: 5.5 $ 2.5 In y- 

and 

(7) 

(8) 

experimental data is given by [B] 
For the central core, y i, > R-/5, the best fit with 

and 

where [9] u0 4.25 u* -+ ub. 

TEMPERATURE PROFILE 

Dividing equation (2) by equation 

(9) 

(10) 

(1) gives 

This equation must be integrated for the various 
regions into which the profile is divided and to 

24 

23 

do this various assumptions are made and these 
are now discussed: 

(a)R’/5- I” -.R. 

(E,?I + Y,/(EH + CL) : I. 

It is assumed for this parabobc velocity 
distribution region that all transport takes place 
by eddies and that Et! - CM so that 

In addition, the ratio f(Z)~f/f’(Z).l, has been 
equated to unity. [See Appendix I]. 

On this basis equation (11) can be integrated 
to give 

t -- 
9 1 

--- * .- ’ U’ 
ApCp u* + const. (12) 

which was then checked by comparison with 
experimental data in Figs. 1 and 2. These show 
that the slope of the line t versus u * can bc 
reasonably represented by (q/A pCp) . (I /u*) in 
accordance with equation (12) thus supporting 
the assumptions made. Finally, calculating 
values of l 11 on the above basis from recent 
data [IO] for E[! and l M for turbulent flow of 
mercury gives qualitative agreement with the 
present assumptions and good agreement for 

FIo. I. Comparison of measured values of temperature and velocity in mercury by lsakoff [I 1 J with 

calculated values. 
c, lsakoff NI,, - 3.76 .’ I@ - Calculated. 
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Frr;. 2, Com~a~son of measured values of tempera- 
ture and velocity in mercury by Brown et aI_ [t4] 

with calculated values, 
Q Brown et al. NIP, -I 66 X IO4 
- Calculated. 

heat transfer coefficients. The smail discrepancies 
involved may be due to the fact that the authors 
[lo] apparently made no akwance for possibfe 
transverse eddies in their rectangular duct. 

(b) 100 < y’ < P/5 
The limiting position at which mo~~~~~ar 

transport of heat ceases to have any sign&ant 
value is assumed to be at y+ = 100. (This value 
is taken from a ~ons~deratjon of the temperature 
profiles at low NP~.) As a resuh the logarithmic 
velocity distribution region has been considered 
as made up of two parts in the calculation of 
temperature profiles. The assumptions in this 
region are the same as in the region P-15 .< y+ 
:< li+ above, again giving equation (12) as the 
integrated form of equation (1 I). 

In this region since a is about ten times as 
great as EP_N and P is about one tenth the value of 
CM* v is neglected in equation (11). Again it is 
assumed that EN = EM, that EH and a are 
additive, and thatf{Z)s =~(Z)M. which is true 
for this region close to the wall. 

For the Iaminar and buffer regions it is again 
assumed that f‘(Z)H =f(Z)nf and that EM and 
Y and EH and a are scaler additive. As stated in 
the previous section the value of the eddy 
assumed by Lin fta ai’. is adopted here. 

The equations based ctn the above ass~rn~~o~s 
apply strictly for &e 3 4 x lO* as there are no 
experimental profiles available below this RR, 
for low NP, values. For NR~ < 4 x lo4 the 
temperature profiles have been predicted by 
retaining the assumption that the limiting value 
at which molecular trauspo~ has any effect is 
at y+ = 100, The significance of this assumption 
is discussed in the section on the comparison of 
theoretical and experimental data. 

The resulting equations which give the tempcra- 
ture pro&s are: 
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(c) For 33 < y+ < 100 

(tB - ln 

yf - Rf - (29Npr) -- 
33 - R+ -T/N&) 

y+ + (2*5/N& 
+ (1 -I- NP6 rl/(fl2)/51~ In q+-(@T5/Npr) * (15) 

But as the first term is always small this equation can be reduced to 

2.5 1 + ~p~~~(~/2)/5~ Y+ + (2~51~~4 

(tB - tj = A,$” 2 2 + ~~~~~(~~2)/5] In 33(2mp,)’ 

(d) For 100 < yf < Rt/5 

q 2.5 y’ 
(tlM - t) = ~ - 

ApCp u* 
In rti. (17) 

(e) For R+/5 < yf < Rf i.e. 0.8 2 Z 2 0 

(tc - t) = & x $ (0.64 - Z2). (18) 

The profiles calculated from these equations 
for low Npr are given in Figs. 3-6 where they 
are compared with experimental data. It wiI1 be 
seen that for the hrgher Nfie the predicted 
temperature difference is only about 4 per cent 
greater than that obtained experimentally. The 
experimental data taken from Isakoff [l l] have 
been calculated by taking the tube-wall tem- 
perature as equal to the fluid-wall temperature, 
on the assumption of a negligible contact 
resistance. This was done because of obvious 
discrepancies in the original data, and the re- 
calculated results, which are about 30 per cent 
lower than the origind, then agree with other 
experimental work. The assumption of negligible 
contact resistance is supported by the data of 
Mizushina et al. [12] on the contact conductivity 
of stagnant mercury which indicate that a cor- 
rection for contact resistance would only become 
significant at Npe > 20 000. 

The dangers of using normalized profiles have 
been pointed out by Sleicher [13] but despite 
this many published results are still represented 
in this way. For example, Azer and Chao’s 
normalized profiles show good agreement with 
both Isakoff’s uncorrected data and with Brown’s 
data [I43 at a NR~ = 350 000, although the 

PO 0.8 0.6 0.4 0.2 0.0 

z 

FIG. 3. Comparison of measured temperature 
distribution in mercury by Brown ef al. [14] with 

calculated profile, 

Q Brown et al. NR~ = 66 x lo4 
- Calculated. 

corresponding values of NN~ are 50 and 30 
respectively. The use of a non-normalized profile 
would have clearly shown that there is in fact a 
considerable difference in the profiles at the 
different NN~* The data of Fig. 3 are shown again 
in Fig. 7 on a normahzed basis to indicate the 
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great loss in sensitivity which results from this 
type of plot. 

Profiles are mly shown for low Npp where the 
assumptions made in this section have the 
greatest effect. 

6 

OF 

FIG. 4. Comparison of measured temperature 
distribution in mercury by lsakoff El 11 with calcu- 

lated profile, 

il lsakoRNrt,. -1: 3.76 x IO* 
- Calculated. 

12 

IC 
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OF 
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0 

FIG. 5. Comparison of measured temperature 
distribution in mercury by lsakoff Ill] with calcu- 

lated profile, 

G lsakoff NRp = 481 x IO4 
- Calculated. 

Flc;. 6. Comparison of measured temperature 
distribution in mercury by fsakoff 1111 with calcu- 

tated profile, 

(1 IsakoR NR, = 37-3 ,< lop 
- Cafculated. 

rc3 0.0 O-6 0.4 02 00 
Z 

Frc. 7. Normalized temperature profile, 

!Y Brown et a!. [ 141 Nrl,. _ 66 j,’ IO” 
- Calculated. 

CONCENTRATION PROFILES 

Equations f I3t(l8) may be used to calcufate 
concentration profiles by replacing the heat 
transfer groups by the corresponding mass 
transfer groups. The assumptions made in the 
previous section concerning the relative effects 
of eddy and molecular transport differ from 
those of Lin et al. in the region y+ > 33. Zn this 
turbulent region the assumptions made become 
important only at low NB and the equations 
for concentration profiles therefore give results 
very close to those of Lin et al. The agreement of 
the present equations with experimental results 
is discussed in a later section. 
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EVALUATIOX OF HEAT TRANSFER 
COEFFICIENTS 

Thus, noting that 

Defining the heat transfer coefficient as (see 
y = R’(1 - 2) 

Appendix IV) 
and 

dy’ zz - R-‘- dZ 

dq 1 Y 1 Jx = _ . ___ - -_ . ~ (19) and that when 
dA tw - tb A trv - tb 

v+ =o. Z==I 
values of h may be obtained if the driving force 

/ 

is known and this is determined from the profile 
Y” = R’, z=o 

by substituting values for the relevant sections yf = R+J5, 2 = 0.8 

into the heat balance equation: we obtain for the five regions of the temperature 
tw -.- to = f; ZZC(trv - t) dZ. (20) proflle: 

y+dl 
t,,. -- fb 1: J, .!/+=5 

2UZ(tw - t)dZ $ 
J 

7/+=5 

Y+-33 

2UZ(tw - t) dZ 

+ 

s 

y’ 533 
1 

Y”=loo 
2 UZ[(trv - Id + (tn - t)] dZ 

+ J 
yf=lOO 

(20 

Y’_fnilsf 2~Z(tw - tu) t (fB - tr) + (L&f - t)] dz 
i 

f 
pi-= (1?+/5) 

,J+x&- 2~z[(trv - hi) + (tg - tiw) $ (tM - t)]dZ. 
J 

Noting that dt = - (const./u*) . du, (l,lf - t) is replaced by [@,4pCp(~*)*]. (u - IA,,,), and neglecting 
the first two terms in equation (21) as negligible, the following form of the equation is obtained: 

s 

1($=33 y+=33 

11%’ - tb = (tW - tB) Y+“p 
2UZ dZ _t 

s Y+-100 

2uZ(tB - t)dZ 

I y’-100 0.8 

+ ftf3 - far) { 

s { Y-=(R”/5) 

2UZ dZ •/- 
5 

2UZ dZ!, 
0 i 

yL-X0@ 

Y7 ._( R’i3) 
2UZdZ+ ;r;, 

s 

0.8 

2UZdZ i 

(22) 

o 
I 

J 
y+-100 

2CJ2Z dZ - c&2 J 
O-8 i 

2/‘-j R&/5) 

o 2L8Z dZ:). 

The second term Af equation (22) has been 
found to be very small and is omitted from 

and values of ~41~ may be calculated from equa- 

subsequent forms of the equation. Integrating 
tions (24) and (25) or obtained from Fig. 8. If 

equation (22) ISee Appendix II] gives the final 
interpolation between the curves of Fig. 8 at 

form 
low Nfr is necessary, a plot of ~~~2~~~ versus 
Npe in the required range will give a curve from 

(23) 
which the desired values of cp may be obtained 

3M 

for any NR+ 



1198 H. W. KRQPHOLLER AND A. D. CARR 

fOOO 

0.0 I 

O-001 o-01 01 1 I& 100 

% OT nt,, 
FIG. 8. Plot of ‘p for use with equations f23).and (28). 

c(a) For NR~ > 4 x 10” 

[I + N~r(5/14+)l* 
‘yPH = 1 _ Npr1f3~~~~~-~~~2/3(s/14.5)2 1 

,+ (d3) tan-’ 
N~P~Wj14.5) - 1 j- (1/3)m + 5 In 1 c 5.64N, 

d3 6 1 -I- 0*041Npr 
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+~*~~j$Iln~]~-_~ln~+~~_1400) (24) 

-~~~~jln~]‘_~In~+~~-8.6 x 104)) 

+ [O-64 -I- 3*8l/(f/2) + 18*45f/2]. 

(b), For 4500 < NR~ < 20 000, the heat transfer coefficient is again obtained from equation (23) 
but now 

fl + Npr(5/14*5)12 -..- . 
1 I - N~~1’3(5/ 14.5) + N$+‘“(5/ 14.5)” 

+ (d3) tan-’ -------d3 
N~~l’~~lO/I4‘5) - 1 i- ~43 1 + 564Npr 

-6- + 5 In rj=j*O4cN; r 

+ 25 
’ + Npe[d(f/2)/5j . ----- 
2 -t- ~~~[Z/(f/2)/51 

In @+!5~-,2*5~fi 
33 i- 2*5Npr I( 0.64 + 1.24 J) { 

- ~ ;;~~;;~t’~{;$l{[l +4.25d#*64- (I - ?“)*I 

(1 + 4.25 yif/2)2 (0.64 - [I - ~1~/~~)12~ - 7.2 [y’(f,‘Z) + 4*25ff/2)] x 

i- 
x (0.41 - [l - (l~/~i)J*~ --. _-_ -___.. 

I + PW’NP~ f‘P)l 

$- 17.28 (.f/2)(0*212 - [l - (lOO/R+)JS) 

1 + P~~~lNw’( f/2)1 
---(1-0.35~)[(l+4.*5~) 

The derivation of this equation is outlined in Appendix fli. 

EVALUATION OF MASS-TRANSFER 
COEFFKIENTS 

Defining the mass-transfer coefficient as 

the same procedure as employed in the previous 
section gives 

N 
kc = CW - cb (26) 

NS,, = !‘” 
~~ 90 

(28) 

with where 970 is obtained from equations (24) and 
(25) hy replacing the heat transfer groups by the 

Cw - Cb = J, 2ZU(Cw - C) dz ~27) relevant mass transfer groups. 



The values of v obtained for smooth pipes analysis fit the experimental values more closely 
from equations (24) and (25) are given in Fig. 8. by reducing the limiting value for the effect of 

molecular conductivity to below J+ -= 100. The 
COMPARISON OF THEORETICAL AND value of 100 however is based on available 

EXPERIMENTAL DATA temperature profiles and until more data in the 
Coefficients of heat and mass transfer have region N’,ae < 2000 become available such an 

been calculated using equations (23) and (28), adjustment is not warranted. 
and the results compared with other theoretical 
equations and with experimental data. The most 100 

effective comparison of any general theoretical 
equation is with experimental values at Nl+. or 
Ns, far removed from unity. Agreement with 
experimental data at high Ns, is evidence for 
the correctness of the equation in describing 

N;, lo transport in the region close to the wall. (For 
NY AC :* 1000. 99 per cent of the resistance to 
transfer is in the region ~‘1. < 5). Similarly! 
agreement with experimental data at low Np, 
indicates correctness of the assumptions made 
for the transfer across the bulk of the pipe. (In 
this case about 80 per cent of the resistance is in 
the region _I” ::a 33 for a Nrar 0.01 and at a 
Iv,;? = lG4, and 97 per cent at N,ip -I IV.) 
Comparison with cxpcrimcntal data at high 
values of Nsc has already been made by Lin et 
al., and the emphasis in the following sections 
is thcrcforc on low I%‘P,. work, although results 
arc given for other values of N,J, and Nse where 
expcrimcntal data arc available. 

FIG. 9. Comparison of experimental N’.v., for liquid 
metals [lb] with the present analysis. 

- - - .- - Azcr and Chao 
N’X,, , @()5 ,v’,, ,(I.77 N,, OC!S 

’ -_--- Lyon N”.v,, 7 0.025 N’,s,“‘~ 
-- - Present analysis, equations (23), (24) and (25). 

Heat Transjiv-Np, jiom 040 I -0. I 

Fig. 9 shows that the present analysis gives 
cxccllcnt agt eerrcnt with the experimental data 
in this region. It is interesting to note that the 
next best agreement is given by Azcr and Chao’s 
semi-en,.pirical equation (which is limited to 
Iv’,,, r; 0.1) and that their equation and cqua- 
tions (23), (24) and (25) include the effect of NP, 
in addition to h”p,. Deisslcr’s analysis has some 
points of similarity with the present work but 
gives high results for ,%“JJ, : 4000 (N/9, 0.022). 
It is unfortunate that nearly all the experimental 
work has been carried out at N/J, of 0~020-0024 

so that the cffcct of NIBS as a \;ariablc in addition 
to N’I p cannot bc satisfactorily assessed. 

The most interesting aspect of Fig. 9 is that 
it shows that the assumptions of the equality of 
~1, and EJI and of neglecting the conduction 
from an eddy, which are contrary to the premises 
of other workers, may very well bc correct at 
low Npr. As stated above, additional expcri- 
mental data are most desirable at this stage. 

It will also bc seen from Fig. 9 that agreement 
of the present theory with experimental results 
is very good down to N’I~, of 400 but that below 
this, expcrin-cntal results arc lower than prc- 
dictcd. It would be possible to make the present 

Excellent analyses of transport at high Ns, 
have been made by Deissler and by Lin ct al. 
Deisslcr considers that turbulence continues on 
a decreasing scale right to the wall, whereas Lin 
et a/. follow Rannie’s suggestion that eddies 
exist in the laminar layer. Both ideas will give 
the same results. The procedure of Lin ct al. was 
cmploycd here as it fits in better with the 
approach used for the remainder of the deriva- 
tion and the present equations rcducc to those 
of Lin et a/. in this high N.Q range. 

The data of Linton and Sherwood [ 161 for 
solution of cinnamic acid at a N.Q of 3000 arc 
shown in Fig. 10. The data can be correlated 

12ocl H. W. KROPHOLLER AND A. D. CARR 
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IO3 

Y 

Id 
IO' 108 IO9 

4% 

FIG. 10. Comparison of experimental N’N= for high 
Ns, with the present analysis, 

0 Linton and Sherwood [16] Ns, = 3000 
- - - - Friend and Metzner 
--------Deissler 

Present analysis. 
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equally well with the equations of either Deissler 
or Lin et al. The equation of Friend and Metzner 
[17] gives results approximately 30 per cent too 
high in this range. 

Heat and Mass Transfer-Np, or Ns, = 0.5-100 
From Fig. 11 it will be seen that equations 

(23) and (28), in common with a number of 
other analyses, represent the experimental data 
reasonably well in this intermediate range of 
Np,. and Ns,. The comparison with experimental 
results has been shown for three values of Npr 
or Ns, (0.6, 10 and 95) at which experimental 
data are available, and curves representing the 
analyses of Deissler [7] and of Friend and 
Metzner [17] are also shown in each case. 

The experimental data used for comparison 
at Np,. = 95 are those of Morris and Whitman 
[18] on the heating and cooling of straw oil 
(Npr = 92-100) and of Friend and Metzner on 
heating fluid SD at low At (NP~ = 93). At 
Npr = 10 the experimental results used are those 
of Eagle and Ferguson [19], calculated from 
their Table II. At Npr or Ns, = 0.6 the mass 
transfer data of Jackson and Ceaglske [20] for 
the vaporization of water into air and the heat 
transfer data of Colborn and Coghlan [21] for 

N 6% 

Frc. 11. Comparison of experimental wNU for intermediate Ns, and Np, with the present analysis. 

0 Friend and Metzner 1171 NP, = 93 0 Colbum and Coghlan [21] Ns, = 0.48 - 0.75 
0 Morris and Whitman [18] Npr = 92-100 - - - - Friend and Metzner 
@ Eagle and Ferguson [ 191 Np, = 10 -------- Deissler 
@ Jackson and Ceaglske [20] Ns, = 0.6 Present analysis. 
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heating N$H, mixtures (Npr = 0*48-O-75) were 
used. This latter range (NP, or Nse = 0.6) is the 
lower limit of applicability of Friend and 
Metzner’s equation. 
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APPENDIX I 

In evaluating the ratio ,f(Z)~/f(z)~ 
following points have been considered: 

(i) Azer and Chao [5] have shown that 

f (z)H = Ju” 2uz dZ 
z 

for constant flux. They have evaluated this 

the 

function using a logarithmic velocity distribu- 
tion and shown that it may be approximately 
represented by Z”*75. 

Another relationship for OH can be 
evaluated [8] as 

f(Zh = Z[l + 4*25x&-/2) - 3*6&f/2) Z2] 

for a parabolic velocity distribution in the central 
core and this can be approximated by l*lZ. 

Because l*lZ gives values very close to Z”*76 
for AH for the NR~ concerned and because 
the profile equation was already complex, it was 
decided that further elaboration to make allow- 
ance for the small departure of ,~(Z)H from Z 
was undesirable. ~‘(Z)H was therefore assumed 
equal to Z. It is probably this approximation 
which causes the values of v in Fig. 8 to differ 
slightly from unity at Npr or Ns, = 1. 

(ii) The usual momentum transfer relation 
EM = Z, which follows from the fact that 
T~/T,, = r/R = Z, then gives the result that 
f(Z)~/f(z)~ = 1 which is used in obtaining 
equation (12). (As stated the approximation is 
substantiated by the data of Figs. 1 and 2.) 
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(0 (tw - h?) 
(vi) J;‘” 2uz dz 

= 
tl + N~t(5/14~5)1~ 

dZ 
--- _-__ -___ 

x ' In 1 - Nprl’s(Sm*S) + Np,2’s(S/14~5)2 
I 

= 
+ (43) tan-l 

Np,1’3 (10/14*5) - 1 
- 

d/3 6 + 0.64 + 1.24 l/(f/2) 

1 j- 564Np, + s ln --- - _- 
1 + 0*041 Npr 

from equations (13, 14) 

(ii) Jl’:“,: Jo 2UZdZ* l2uZdZ = 1. 

y+=R+atZ=O 

33 
y+ = 33 at Z = 1 - R+ 9 1. 

(5.5 + 2.5 In y+) dy+ 

+ 2.5 (y+ In y+ - y+) 
R+/5 

100 
Where 

dy+ z=l-y+/R+, dZ=-Rc 

U = l/(f/2) (55 + 2.5 In y*) 

(iv) rrr - fw 

1 + N~eIdf/2Y51 
2_NPc[Xf /2)/S] > 

from equation (16) 

x ln 100 + (2*5/N~r) 
33 + (25jN;;r 

(v) UB = d(f/2)(5’5+2*5 tn lo()) =172/(f/2) 

where 

U = 2 - 7.2 d( f 12) Z” 

and 

f J 
R+16 

= -_. 

R’ loo 
jS.5 + 2.5 In y+]* 

= k+ 3oy+ - 
1 s(y+)” 
R+- + 13.75 

Iv+ In y+ -L y+] 

+ (y+>” R+‘a 4 I 100 

(viii) J:” 2 u2z u 

= J [ ‘-’ 2 ’ Z dZ 
0 

2 

uo 
= - 

[( 1 

2 

ub 
Z2 - 7.2 d( f 12) 2 Z’ 

Oe8 + 044fZ5 

I 0 



1204 H. W. KROPHOLLER AND A. D. CARR 

where 

;; = 1 + 4.25 $J f 12). 

By substituting these values in equation (22) and 
taking out as common factor 

4 1 1 -_- - .__. 

APCP w f/2 

the final equation Nst = (f/2)/97,~ is obtained. 

APPENDIX III 

For the range 20 Ooo > NR~ > 4500, 
R+/5 < 100 so that the logarithmic regions 
disappear completely and the following equation 
replaces equations (22) 

(fir .--- lb) # -0 

L= J ?/+-33 
2uz (fir_ -- t) dZ + (trv --- tu) 

J 
y+-33 

x 2uzdZ 
y-=Hf 

J 
y+33 

+ 
R’-15 

2CJZ (tn - I) dZ + (tu - tc) 

J 
I(+/5 

X .A 2VZdZ 
R 

s 

ii+/5 
-t 2UZ (tc - t) dZ 

100 

J 
100 

-k 2UZ (t>r - t) dZ + (rc - tsr) 
R- 

J 
100 

X 2 UZ dZ. 
R. 

As the first term is no longer negligible, the first 
two terms together are taken as equal to 
(trr - rn) to give the same first term as in equa- 
tion (22). The region 33 =3 y+ > 100 still has a 
negligible effect. The fourth term is evaluated as 
in Appendix II, but it should be noted that this 
term only exists if RT/5 > 33. The fifth, sixth 
and seventh terms are evaluated by substituting 
the relevant functions given below. 

(tc - 1) = ],“c;, * (u*j2 l (u - UC) &d 
and in the central parabolic region 

CJ, ;I R!u*/14.4 

* 4c.v = 28.8/[Nre(.f/2)1 . . 

t.Jf - t -- 
q 

’ (u -- l4.v) 
ApCp ’ (u*)~ 

tc - t.tf 

4 ’ (W - 4 . 
1 

= lpqj * p,2 
I -t-28;s/[N~+U/2)] 

4 ; 
A&;, ’ (ti*)2 

’ (7*2u*) LO.64 --.. (1 -. k”)‘] 

and the remainder of these terms was evaluated 
as in Appendix I I. 

APPENDIX IV 

The requirement of constant flux was made 
because a heat balance to any distance Z from 
the centre of the tube gives for equation (2) 

for constant flux and 

(cH$a)L’= ? 2q - . I --. . J:2UZ(rrv -. -..---- - t)dZ -- 
2y 2A pCp Z(tw - r.rr) 

(30) 

for constant wall temperature. 
Therefore only for constant flux is tiq/ijA == q/A 

and also equation (30) cannot be solved directly 
as the variables are not separable. 

This is not a serious limitation as heat transfer 
coefficients for constant flux and constant wall 
temperature are the same for NP~ > O-5 [5]. For 
lower values of Np, theoretical considerations 
[4, 61 have indicated that the transfer co- 
efficients differ slightly in the two cases but 
experimental confirmation is inadequate PI. 

Rt%nn&-Les auteurs proposent un mcdele simple pcur le transpcrt de masse cu de chaleur, frnde 
sur une forme modifke de I’analc gie de Reynolds. IIs Ctablissent des equations perrr.ettant de calculer, 
pour n’importe quelle valeur de Np, ou N.Q, les coefficients de transport de masse et de chaleur et les 
profils de temperature et de concentration. Pour Ctablir ces equations, ils supposent: 1” que, dans 
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la conduite, le m&anisme de transport est tel qu’ii n’y a pas de transport moleculaire appreciabIe dans 
le noyau turbulent, meme aux bas nombres de Prandtl et 2” que le transport tourbillonnaire est uni- 
quement fonction du type d’ecoulement. L’equation est de la forme 

Nsr (OU NSh) = fE 
V 

4, est don& & la fois sous forme analytique et sous forme graphique en fonction de Npr (ou NsJ, 
pour des conduites lisses. 

Les calculs de N’N,, et les profils de temperatures sent en bon accord avec les donnQs experimentales. 
Uneattentionparticulitreestportee surlesrtSsultatsauxbasnombresdePrandtioaleshypothtsesfaites 
quantautransportdanslenoyauturbulentsontlesplusvalables;danscette region,lesCquations pro- 
posees sont mieux &rifiees par-les r&sultats exp~rimentaux que les autres relations. Dans le dcmaine 
interm~diaire de nombres de Prandtl ou de Schmidt, les equations proposees sont en bon accord avec 
les autres analyses et pour les valeurs Blev&es de Nse, les equations se reduisent 21 celles de Lin et autres 

[I ] qui sont en excellent accord avec les don&es experimentales. 

Zusammenfassung-Fur den turbulenten W&me- und Stofftransport wird mit einer modifizierten 
Form der Reynoldsanalogie em einfaches Model1 vorgeschlagen. Danach atgeleitete Gleichungen 
liefern W&me- bzw. Stofftibergangskoeffizienten und Temperatur- bzw. Konzentrationsprofile fur 
beliebige Werte von Pr bzw. SC. In der Ableitung wird angenommen: 

(1) der Transportmechanismus der Rohrstromung verhllt sich so, dass kein wesentlicher Molekular- 
transport im turbulenten Kern auftritt, selbst bei kleinen Pr; 

(2) der Wirbeltransport ist nur eine Funktion des Striimungsprofils. 

Die Gleichung hat die Form 

St (bzw. Sh) = L2 
‘p 

wobei p sowohl algebraisch wie such als Kurve 9, fiber Pr (bzw. SC) ftlr glatte Rohre gegeben ist. 
Berechnungen von Nu’ und Temperatu~rofilen stimmen gut mit Versuchswerten iiberein. Besondere 

Sorgfalt wurde zur Berechnung bei kleinen Pr aufgeaendet, da hier obige Annahmen fur den Transport 
im turbulenten Kern von grosstern Einfluss sind. In diesem Bereich geten die vcrgeschlagenen 
Gleichungen besser als andere Korrelationen experimentelle Ergebnisse wieder. In einem Zwischen- 
bereich von Pr bzw. SC kongruieren die Gleichungen gut mit anderen Analysen; bei hohen Werten von 
SC reduzieren sich die Gleichungen auf jene von Lin und anderen [l], die mit Versuchswerten bestens 

tibereinstimmen. 

AHEOTa~~-npennaraeTCK npOCTaK MOJ&Jib Typ6yJleHTHOrO TenKO-HKH MaCCOO%WKa, 
OCHOBaHHaK Ha MO~K~K~KpOBaHHO~ aliaJlOrHH i%ZiHOJIbKCa. c IIOMOIlJbKl BbtBcJreHHinX 
YpaBHeHHti MO?HHO Onpe~~~KTb KO3~~~~~eKT~ TenKO-K MaCCOO6~eHa, llpO#MKM TeMne- 
PaTypbI M ~OH~eHT~a~KK npK Kto6OM 3HaMeHHK Npr KKK NSo. f&K BblrBOae YpaRHeHMK 
npe~~O~araeTCK, KTO B Typ6y~eHTHOM KKpf? HOTOKa He npOKCXO~KT 3Haq~Te~bHOrO MOKeKy- 
~K~HOfO~~~~HOCa~aHt~n~KH~6O~bmOM 3HaWHMM Npr,zt~TO nepeHOCBKXpe~npe~CTaBBKeT 
COFtOtt #JyHHuHH) TOKbKO XapTHHbt nOTOHa.YpaBHoHEie KMeeT~~e~y~mK~ BMX: 

NSr (HJIEI Nsh) = “/2 
v 

we ‘p onpegenaerca Kau anre6panqecrrn, ran EI nocrpoemreM rpai+mrecuoti aanncnMocrn p, 
OT NP, (timi Nsc) KKK rna~mrx ~py6. 

~bW!CKeHAK NNu E TeMnepaTypHbtX IlpO@HKeti XOPOUIO COrKaCyloTCK CWCnepUMeHTaKb- 
HbIMM APHHblMH. IjOJIbIIIOe BHKMaHHC yneJIKt?TCK pe3yJIbTaTaM nplz He6OnbmOM 3HaYeHMK 
NP~. B Hpe~nOKO?HeHHH, KTO nepeHOC B Typ6J'JI~HTHOM Knpe HMWT Haa6oKbmHt B@.@KT. B 
3TOt OEiaacTIlaKCnepaMeHTaJIbHbIe pe3)VIbTaTbt6oJIeeTOVHOOnpeJH?HKHfTCK KpeKKO3HeHHbtMK 
YpaBHeHHKMK, KeM Kf3yrMMM COOTHOLKieHHRMK. B npOMe?uyTo~uOm guanaaorie NP~ kinn Ns, 
npeAaOxceHH~eypaBHeHKK COrJiaCytOTCK c ApYrMMU aHa~UaaM~,a~p~ 6onbmHx 3HaYeHHKX 
NS, BTH Yp~HeHKK CBOKKTCK K YpaBIieHLlflM fillHa H KpyrMX [I], KOTOPble H~O~KTCK B 

nO~HOM COOTBeTcTB~K C 3KCnepK~eHTa~bH~MK ~aHH~~~. 


