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Abstract—A simple model of turbulent heat or mass transfer based on a modified form of the Reynolds
analogy, is proposed. Equations have been derived from which heat or mass transfer coefficients, and
temperature or concentration profiles, may be predicted at any value of Np, or Ng.. In deriving the
equations it is assumed (i) that, in pipe flow, the transport mechanism is such that there is no significant
molecular transport in the turbulent core even at low Np,, and (ii) that eddy transport is a function of
the flow pattern only. The equation is of the form

Nisi (or Nga) = fl%
@

and g is given both in algebraic form and as a plot of ¢ versus Np, (or Ns.) for smooth pipes.
Computations of Ny, and temperature profiles agree well with experimental data. Particular
attention is given to results at low Np,, where the assumptions made as to transport in the turbulent
core have the greatest effect; in this region the proposed equations predict experimental results more
closely than do other correlations. In the intermediate range of Np, or Ng. the proposed equations
agree with other analyses, and at high values of N, the equations reduce to those of Lin ef al. [1]
which are in excellent agreement with experimental data.

’

NOMENCLATURE Ny.» Nusselt number = (h2R)/k or equiva-
A, area for heat transfer, ft%, at pipe wall, lent mass transfer group (k¢2R)/D;
Ay at radial distance r from the centre; Np,, Peclet number = Ng, X Npr or equiva-
C,  timeaverage concentration Ib moles/ft?; lent mass transfer group Nge X< Nse;
Cp, mixed mean concentration; Cyp, Npy, Prandtl number = (Cpp)/k;
concentration at pipe wall; Nre, Reynolds number = (pup2 R)/i;
Cp, specific heat Btu/lb degF; Nge,  Schmidt number = u/pD;
D,  molecular diffusivity of mass, fi2/h; Nsi, Stanton number = h/(pCpup);
A fanning friction factor; Nsn, Sherwood number = kc¢fus;
A(Z), function of Z; f{Z)u, function of Z for 4, heat load, Btu/h, gw heat load at wall;
momentum transfer; f{Z)y, function of R, radius of pipe, ft;
Z for heat transfer; f(Z)p, function of R+, dimensionless radius of pipe Ru*/v;
Z for mass transfer; r, distance from centre of pipe, ft;
h, heat transfer coefficient, Btu/h fi2 t time averaged temperature, degF; fs,
degF; mixed mean temperature; fz, tempera-
k, thermal conductivity Btu/h ft degF; ture at y* = 33; f¢, temperature at
ko, mass transfer coefficient, ft/h; Z =0-8; 1, temperature at y*+ = 5; ty,
N, mass transfer, 1b moles/h ft2, at wall, temperature at y+ = 100; ¢, tempera-
Nr at radial distance » from the centre; ture at wall;
u, time average axial velocity at any radial
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position ft/h; wus, mean velocity; ug,
velocity at yt = 33; wue, velocity at
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Z == 0-8; upy == velocity at y+ == 100;
u,, velocity at centre of pipe;

u*,  friction axial velocity ft/h us +/(f]2);

u*t,  dimensionless axial point velocity u/u*;

U, dimensionless axial point velocity u/up;

¥, distance from pipe wall, ft;

y*,  dimensionless distance from pipe wall,
yu¥fv;

Z, dimensionless distance from the centre
of the pipe, r/R;

a, thermal diffusivity, ft*/h;

s eddy diffusivity, ft2/h; es, eddy diffus-
ivity of momentum; ¢, eddy diffusivity
of heat; ep, eddy diffusivity of mass;

i, viscosity, Ib/ft h;

v, kinematic viscosity, ft?/h;
'R density, 1b/ft3;
7, shear stress, Ib/ft® h2, at wall, », at

radial distance r from the centre.

INTRODUCTION
1T 18 possible to predict heat and mass transfer
coeflicients, and the corresponding profiles, by
analogy with momentum transport if a relation
between the transport processes is known or
assumed. Reynolds’ original assumption of
complete identity of heat and momentum trans-
fer results in the relation Ng; = f/2, which is only
true for Np, = 1, and later workers have made
more elaborate analogies to provide equations
of wider utility. These relations can be expressed
as Ngp = f/2 where ¢ = §(Npp, f/2). Recent
equations have generally been developed to
agree with experimental data in some definite
Npy or Nse range and of these the equations for
heat transfer in liquid metals and for mass
transfer in liquids are of particular interest. In
the liquid metal range the noteworthy relations
are: Martinelli’s [2] equation for constant heat
flux, Lyon’s [3] simplified equation for the same
condition, Seban and Shimazaki’s [4] equation
for constant wall temperature and variable radial
heat flux, Deissler’s [53] and Azer and Chao’s [6]
equations for variable ex/ep. For mass transfer
in liquids only the equations of Lin ez al. [1] and
of Deissler [7] are sufficiently accurate to merit
consideration. Some of these equations may be
extended with reasonable accuracy over a wide
range of Np, or Ns. but none is universal in its
application. In this paper an equation Iis
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developed which may be used to evaluate heat
or mass transfer profiles and the corresponding
coefficients over the entire Np, or Ns, range and
at all turbulent Ng,.

In deriving this equation only incompressible
fluids in fully developed turbulent flow in
circular pipes are considered and it is assumed
that constant flux, steady state conditions apply
so that transfer coefficients are independent of
pipe length.

Defining the eddy diffusivities by the equa-
fions

Ty

d
(ear ) gy =7 = WP A ()

d’ N qr AAAAAA q .
(e + o) dy = ApeCp = ApCp S (2)

dc
(ep + D) dy =Ny =N.fZ)p (3)

the temperature or concentration profiles may
be obtained by substituting the relations of the
following section into equations (2} or (3).

VELOCITY PROFILE

The velocity profile has been divided into four
regions. The equations for the first two of these
are due to Lin et al. who modified von Kdrmdan’s
universal profile by introducing an eddy of
magnitude eprfv = (p*/14-5)® into the laminar
layer. This agrees with the general considerations
of Hinze [8] and gives good agreement with
experimental mass transfer coefficients, The
equations employed for the first two regions are
therefore:

for 0 <C y* < 5 (laminar layer)
14'5{ (I + (y*/14-5)]
o= Rk

+ 431

[

UL as) (1A
Q2pH145) — 1 /3)
an - \/3 T ) ’f— 6 J (4)

and for 5 = pt =0 33 (transition region)

iyt
and
+
MY 0959 (6)
v 5
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For the third region, 33 < y* <. R*/5

ut =55+ 2-5Iny- (7
and
_ Ru*{y »
w BN e

For the central core, y #* == R~/5, the best fit with
experimental data is given by [8]

u

ut = " - 722° 9
Uy
and
Ru*
M T a4 (10)

where [9] uy - 425 u* -L up.
TEMPERATURE PROFILE
Dividing equation (2) by equation (1) gives
_9 Vemtw L S D
ApCp  u eyt o’ §{VA)Y;

This equation must be integrated for the various
regions into which the profile is divided and to

ds

(1)
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do this various assumptions are made and these
are now discussed:

(@ R'/5- vy - R

It is assumed for this parabolic velocity
distribution region that all transport takes place
by eddies and that ey -~ €3 so that

(exr + v)/(ew + @) —= L.

In addition, the ratio f(Z)u/ f(Z)ar has been
equated to unity. [See Appendix 1].

On this basis equation (11) can be integrated
to give

t - A,j(}i . ul-; - u” + const. (12)
which was then checked by comparison with
experimental data in Figs. 1 and 2. These show
that the slope of the line ¢ versus u* can be
reasonably represcnted by (g/4pCp) - (1/u*) in
accordance with equation (12) thus supporting
the assumptions made. Finally, calculating
values of €y on the above basis from recent
data [10] for ey and ep for turbulent flow of
mercury gives qualitative agreement with the

present assumptions and good agreement for

19 2

o

+2I

24

Fis. 1. Comparison of measured values of temperature and velocity in mercury by Isakoff {11} with
calculated values,

C Isakoff N, - 376 =~

104

— Calculated.
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FiG. 2. Comparison of measured values of tempera-

ture and velocity in mercury by Brown ef of. [14]
with calculated values,

¢ Brown et af. Ng, = 66 x 10%
—- Calculated.

heat transfer coefficients. The small discrepancies
involved may be due to the fact that the authors
[10] apparently made no allowance for possible
transverse eddies in their rectangular duct.

(b) 100 < y* < R*/5
The limiting position at which molecular
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transport of heat ceases to have any significant
value is assumed to be at y* = 100. {This value
is taken from a consideration of the temperature
profiles at low Npr) As a result the logarithmic
velocity distribution region has been considered
as made up of two parts in the calculation of
temperature profiles. The assumptions in this
region are the same as in the region R*/S < y+
= R* above, again giving equation (12) as the
integrated form of equation (11).

(© 33 <yt <100

In this region since « is about ten times as
great as ey and v is about one tenth the value of
ear, v is neglected in equation (11). Again it is
assumed that ey = ¢y, that ey and o are
additive, and that f(Z)n = f(Z)y which is true
for this region close to the wall.

(do<yr<33

For the laminar and buffer regions it is again
assumed that /(2}y = F{Z)xm and that ex and
v and g and o are scaler additive. As stated in
the previous section the value of the eddy
assumed by Lin ef /. is adopted here.

The equations based on the above assumptions
apply strictly for Nz, > 4 X 10% as there are no
experimental profiles available below this Ng,
for low Npr values. For Ng, << 4 x 10* the
temperature profiles have been predicted by
retaining the assumption that the limiting value
at which molecular transport has any effect is
at y+ == 100. The significance of this assumption
is discussed in the section on the comparison of
theoretical and experimental data.

The resulting equations which give the tempera-
ture profiles are:

{a) For 0 < y+ <5

_g 115
(tw—1) = ApCp w3 Npy

[l + Nedy*/14-5)] }

({tm e Nerrigra

+ (v/3) tan-1 {
(b) For 5§ < 3+ < 33

(tr— 1= ApCp u*

NpA%2yt14:5) — 1) (/3=
o5
g S 1+NPr[(3?""/5)“0‘959}‘ (14)

14 0-041Npy
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(¢) For 33 < y*+ < 100

g 25 1
D="1up w* 21 Nedv/ (T ID]

(ts —

1195

y+ — R+ — (2:5/Ner)
N33 TTRY — (25/Ner)

But as the first term is always small this equation can be reduced to

{tz —

(d) For 100 < y+ < R*/5

g 25yt
(tM*-t)—m‘u—*lnm.

y* -+ (2:5/Npr)
£ N OB S Gae) 49
g 25 1+ NedV(f/2)/5], y*+ (5/Ne) 16)
D= 2pCp v 2% Nee/(F/D5] " 33 + 25Ner)"
. F ‘
0¥))] 16 m) —
5P
14 ‘—‘T

(e) For R*5Z y+ < R+ ie. 08 2Z >0

q

72
—— {0 e P2
)= G5 X (0-64 — 72). (18)

(te —

The profiles calculated from these equations
for low Np, are given in Figs. 3-6 where they
are compared with experimental data. It will be
seen that for the higher Ng, the predicted
temperature difference is only about 4 per cent
greater than that obtained experimentally. The
experimental data taken from Isakoff [11] have
been calculated by taking the tube-wall tem-
perature as equal to the fluid-wall temperature,
on the assumption of a negligible contact
resistance. This was done because of obvious
discrepancies in the original data, and the re-
calculated results, which are about 30 per cent
lower than the original, then agree with other
experimental work. The assumption of negligible
contact resistance is supported by the data of
Mizushina et al. [12] on the contact conductivity
of stagnant mercury which indicate that a cor-
rection for contact resistance would only become
significant at Np, > 20 000,

The dangers of using normalized profiles have
been pointed out by Sleicher [13] but despite
this many published results are still represented
in this way. For example, Azer and Chao’s
normalized profiles show good agreement with
both Isakoff’s uncorrected data and with Brown’s
data [14] at a Ng, = 350000, although the

A)

Q-2 00

Fic. 3. Comparison of measured temperature
distribution in mercury by Brown ef al. [14] with
calculated profile,

© Brown et al. Ng, = 66 x 10*
—- Calculated.

corresponding values of Ny, are 50 and 30
respectively. The use of a non-normalized profile
would have clearly shown that there is in fact a
considerable difference in the profiles at the
different Nwy. The data of Fig. 3 are shown again
in Fig. 7 on a normalized basis to indicate the
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great loss in sensitivity which results from this
type of plot.

Profiles are only shown for low Npy where the
assumptions made in this section have the
greatest effect.

IO T T ‘l’ T T I T T
L | i
8 ; -5 0 Y06
/ﬁ)
- o -
<>/
&
IIF [e] F 4
I Q/ ]
418
D i
D ! i
o)
2!
o) 1 i i L ) :
10 08 06 »04 02 00

Fic. 4. Comparison of measured temperature
distribution in mercury by Isakoff [11] with calcu-
lated profile,

O Isakoff Np, == 376 x 10*

-— Calculated.
12— Y Y ~T" T
- ./32 -1
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Fic. 5. Comparison of measured temperature
distribution in mercury by Isakoff [11] with calcu-
lated profile,

O Isakoff Np, = 481 x 10¢
— Calculated.
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Fig, 6. Comparison of measured temperature
distribution in mercury by Isakoff [11] with calcu-
tated profile,

O Isakoff Np, = 37-3 = 10¢
— Calculated.
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F1G. 7. Normalized temperature profile,

Y Brown et al, [14] Ny, = 66 » 10*
- Calculated.

CONCENTRATION PROFILES

Equations (13)-(18) may be used to calculate
concentration profiles by replacing the heat
transfer groups by the corresponding mass
transfer groups. The assumptions made in the
previous section concerning the relative effects
of eddy and molecular transport differ from
those of Lin et al. in the region y* > 33. In this
turbulent region the assumptions made become
important only at low Np, and the equations
for concentration profiles therefore give results
very close to those of Lin ef a/. The agreement of
the present equations with experimental results
is discussed in a later section.
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EVALUATION OF HEAT TRANSFER
COEFFICIENTS
Defining the heat transfer coefficient as (see
Appendix 1V)

dg 1 q 1
= 4 = (19)

fw——lb;—A'ZW“fb
values of 4 may be obtained if the driving force
is known and this is determined from the profile
by substituting valucs for the relevant sections
into the heat balance equation:

h
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Thus, noting that

y=R¥l—-2)
and
dyt = — RtdZ
and that when
yt =0, Z =1
y+ = R*, Z=20
y*+ = R*/S, Z =038

we obtain for the five regions of the temperature

tw - fp = [12ZU(tw — ) dZ. (20) profile:
y+$0~ ?/+=5
ty — fp == j QUZ(tw — 1)dZ +- I 2UZ(tw — 1)dZ 1
y*=5 +=33
Pyt =33
+|,  20Z[(tw — tB) + (15 — ]dZ
JY¥ =100
ryt=100 2D
1, . 2UZ[(tw — tB) + (t8 — ta) + (tm — D] dZ
JyT=(R"/s}
cyto (ntrsy
-+ UZ[(tw — tg) + (1 — tar) -+ (1 — 0)]dZ.

Jytert

P

Noting that df = — (const./u*}. du, (1ar — 1} is replaced by [¢/4 pCp(u*)?] . (u — uas), and neglecting
the first two terms in equation (21) as negligible, the following form of the equation is obtained:

vt=33 yt=a3 -
tw — 1y = (tw — IB)J . UZzdzZ + j 2UZ(tg — HdZ
FmB vt-100
r Py t=100 08 )
—+ {1y — IM){E L, 2UZdZ + J 202427 »
LSy =(& /5 o J L 22)
9 { o rk"m wzdz + " 2wz az
ApCp |(u*) ¥ =(R/5) ’ + @*)2 L
+
up [yt=100 u (8 3
— =g 20372 47 — — Lz .
(u*)? L*=~(R*‘/5) (u*) Jo 2 dZ}} J

The second term Of equation {22) has been
found to be very small and is omitted from
subsequent forms of the equation. Integrating
equation (22) [See Appendix II] gives the final

form
Sz

Nt ="
st = (23)

3M

and values of g may be calculated from equa-
tions (24) and (25) or obtained from Fig. 8. If
interpolation between the curves of Fig. 8 at
low Npr is necessary, a plot of (f/2)/p versus
Npe in the required range will give a curve from
which the desired values of ¢ may be obtained
for any Nge.
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FI1G. 8. Plot of ¢ for use with equations (23) and (28).
() For Ng. >4 x 104
f 14 5. un [1 + Ne(5/14-5)]2 ]
QH = ,\/ —— Np23 % In NPr1/3(5/14.5) 1 Np 255 14°5)2
Ne3(10/14-5) — (\/3)’3‘1’ 1 -+ 5-64Np,
-1 . T
+ (+v/3) tan V3 3 0041 NG
1 4+ Ne V(£ /]2)/5] [ 100 + 2-5Npr'J ) ( Jf )}
| e — 1 — 1711064 + 1-24
+ (2 S TF Nedd VD51 33 F 2:5Np + 2

/ s (R 55 (R 4)
+(\/z)'7z1{55 510} =55z a5 — 10
R+ R+ R R* R+ R 205 x 10°
+25 ( g — 5 — 360) 25 (50 Rt —RT““)}
f2 RY _ 30 (RYE 4)
+ - 20 (Y —100) — fo (S — 05 x 10

R+ R* R¥ 1375 ((R*) . R¥  (R¥)
+ 13-75 ( s~ —3 0)— = ( s~ 15 = 100

—2 X 10")

- (24)
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R+

: 2 2 2 P
A P 2 e

+ [0:64 + 3-8+/(f/2) + 18-45 f/2].

Rj __2R* 2R+ ) (29

(b) For 4500 < < 20 000, the heat transfer coefficient is again obtained from equation (23)
but now
f 145N 25 ) 1n [U+ Np(5/14-5) 7
= ( ) 3 et — Npe3(5/14-5) + Np2%(5/14°5)
. NpB3(10/145) — 1 m4/3 1 + 564Npy
+ (v3) tan~ V3 Tty OO‘“NP,}
, f L+ Neelv/(f /2)/5] [ (R*[5) + 2351\/5] ( . Jf)
+23 (\/2) T N 2ys] T I T msNe (00124 )5

w4 2] s (1= )

—s Jilen= (=201 e

(1+425+/f/2)* {064 — [1 — (100/RNP} — 72 [V(f{2) + 425(f[2)] X
x {041 — {1 — (100/R*)]*}

1+ [28:8/Nee/(f /2]

17-28 (£/2){0-212 — [1 — (100/R+)]°} i 'f ) 'f
+ [+ [28:8/Npey/(£/2)] - ’”’035\/ [“’425 «/ 2)

(=) oo Ll =) ]+ (e ) (-2
_72{\// 1-425} ' ]OS)+17~28{(I~—-I}??)}. ,

The derivation of this equation is outlined in Appendix 1L

+

EVALUATION OF MASS-TRANSFER the same procedure as employed in the previous
COEFFICIENTS section gives
Defining the mass-transfer coefficient as
ke N Nsp = /12 (28)
TG @) i
with where @p is obtained from equations (24) and

(25) by replacing the heat transfer groups by the
Cw — Cp = [12ZU(Cw — C)YdZ (27) relevant mass transfer groups.
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The values of ¢ obtained for smooth pipes
from equations (24) and (25} are given in Fig. 8.

COMPARISON OF THEORETICAL AND
EXPERIMENTAL DATA

Cocfficients of hcat and mass transfer have
been calculated using equations (23) and (28),
and the results compared with other theoretical
equations and with experimental data. The most
effective comparison of any general theoretical
equation is with experimental values at Np, or
Nse far removed from unity. Agreement with
experimental data at high ANs. is cvidence for
the correctness of the equation in describing
transport in the region close to the wall. (For
Nse > 1000, 99 per cent of the resistance to
transfer is in the region y* << 5). Similarly,
agreement with cxperimental data at low Np,
indicates correctness of the assumptions made
for the transfer across the bulk of the pipe. (In
this case about 80 per cent of the resistance is in
the region y! > 33 for a Npr . - 00l and at a
Npe = 164, and 97 per cent at Nge — 108)
Comparison with experimental data at high
vatues of Ag. has already been made by Lin et
al., and the emphasis in the following sections
1s therefore on low Npy work, although results
arc given for other values of Npy and Nge where
experimental data are available.

Heat Transfer—Np;, from 0-001-0-1

Fig. 9 shows that the present analysis gives
excellent agreement with the experimental data
in this region. It is interesting to note that the
next best agreement is given by Azer and Chao's
semi-en.pirical cquation (which is limited to
Npy < 0-1) and that their equation and equa-
tions (23), (24) and (25) include the effect of Np,
in addition to N'pe. Deissler’s analysis has some
points of similarity with the present work but
gives high results for N'p, - 4000 (Npr - - 0-022).
It is unfortunate that nearly all the experimental
work has been carricd out at Npy of 0-020-0-024
so that the effcct of Npr as a variable in addition
to N're cannot be satisfactorily assessed.

It will also be seen from Fig. 9 that agrcement
of the present theory with experimental results
is very good down to N'p. of 400 but that below
this, experimental results are lower than pre-
dicted. 1t would be possible to make the present
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analysis fit the experimental values more closely
by reducing the limiting value for the effect of
molecular conductivity to below y* = 100. The
value of 100 however is based on available
temperature profiles and until more data in the
region N'p. << 2000 become available such an
adjustment is not warranted.

100 —_—

'
NN v

O | i Iy Do
Ct [?ﬁ; experimental
Al . 1l

104

Noe

10°

Fi16. 9. Comparison of experimental N'~, for liquid
metals [16] with the present analysis,
———————— Azer and Chao
Ny, 7 . 005 N'p, 077 Np 028
————— Lyon N'x, -~ 7 0025 N'p 08
-- Present analysis, equations (23), (24) and (25).

The most interesting aspect of Fig. 9 is that
it shows that the assumptions of the equality of
ey and ey and of neglecting the conduction
from an eddy, which are contrary to the premises
of other workers, may very well be correct at
low Npr. As stated above, additional experi-
mental data are most desirable at this stage.

Mass Transfer—Ns. - 1000

Excellent analyses of transport at high Ns
have been made by Deissler and by Lin et al.
Deissler considers that turbulence continues on
a decreasing scale right to the wall, whercas Lin
et al. follow Rannic’s suggestion that eddies
cxist in the laminar layer. Both idcas will give
the same results. The procedure of Lin er al. was
employed here as it fits in better with the
approach used for the remainder of the deriva-
tion and the present equations reduce to those
of Lin et al. in this high Ns. range.

The data of Linton and Sherwood [i6] for
solution of cinnamic acid at a Nge of 3000 are
shown in Fig. 10. The data can be correlated
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/V' L /]
Nu /
/
1'%
L P {/ o}
103 A
rd
.
—
pd
1o?
107 108 10
w,

Pe

Fi1G. 10. Comparison of experimental N’x, for high

Ns, with the present analysis,
O Linton and Sherwood [16] Ns. = 3000

~ ~—— — —— Friend and Metzner
———————— Deissler
Present analysis.

equally well with the equations of either Deissler
or Lin et al. The equation of Friend and Metzner
[17] gives results approximately 30 per cent too
high in this range.

Heat and Mass Transfer—Npyr or Ns; = 0-5-100
From Fig. 11 it will be seen that equations
(23) and (28), in common with a number of
other analyses, represent the experimental data
reasonably well in this intermediate range of
Np, and Ns.. The comparison with experimental
results has been shown for three values of Npy
or Ng. (0-6, 10 and 95) at which experimental
data are available, and curves representing the
analyses of Deissler [7] and of Friend and
Metzner [17] are also shown in each case.

The experimental data used for comparison
at Npr = 95 are those of Morris and Whitman
[18] on the heating and cooling of straw oil
(Npr = 92-100) and of Friend and Metzner on
heating fluid SD at low 4t (Npr =93). At
Np, == 10 the experimental results used are those
of Eagle and Ferguson [19], calculated from
their Table II. At Npr or Ns. = 0-6 the mass
transfer data of Jackson and Ceaglske [20] for
the vaporization of water into air and the heat
transfer data of Colborn and Coghlan [21] for

10 Iz iTi HY
Np, of Ng,. =10} | | ‘
e 7 »
— —
- P . 4
Ne, or/\& O-G'MI /4/ ) % N, o Ny 295
M | /
Tl N | 1 L
- e 1
74
P,
1%
10
103 4 5 6 7
10 10 10 10
/VPe

FiG. 11. Comparison of experimental N’x, for intermediate Ns, and Np, with the present analysis,

© Friend and Metzner [17] Np, = 93

(® Morris and Whitman [18] Np, = 92-100
@ Eagle and Ferguson [19] Np, = 10

® Jackson and Ceaglske [20] Ns, = 0-6

© Colburn and Coghlan {21] Ng, = 0-48 — 0-75
~————— Friend and Metzner
———————— Deissler

Present analysis.
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heating N,/H, mixtures (Npy = 0-48-0-75) were
used. This latter range (Npy or Ng, = 0+6) is the
lower limit of applicability of Friend and
Metzner’s equation.
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APPENDIX I

In evaluating the ratio f(Z)u/f(Z)m the
following points have been considered:

(i) Azer and Chao [5] have shown that

220z dz
f@u =22

for constant flux. They have evaluated this
function using a logarithmic velocity distribu-
tion and shown that it may be approximately
represented by Z%7,

Another relationship for f(Z)s can be
evaluated [8] as ‘

F @ =21 + 425v(f[2) — 36v/(f/[2) 27]

for a parabolic velocity distribution in the central
core and this can be approximated by 1-1Z.

Because 1:1Z gives values very close to Z%7%
for f(Z)u for the Np, concerned and because
the profile equation was already complex, it was
decided that further elaboration to make allow-
ance for the small departure of f(Z)gy from Z
was undesirable. f(Z)n was therefore assumed
equal to Z. It is probably this approximation
which causes the values of ¢ in Fig. 8 to differ
slightly from unity at Npy or Nsc = 1.

(ii) The usual momentum transfer relation
F(Z)u = Z, which follows from the fact that
7r/ty =r/R =Z, then gives the result that
f(2)u/ f(Z)u =1 which is used in obtaining
equation (12). (As stated the approximation is
substantiated by the data of Figs. 1 and 2.)

APPENDIX II
The heat transfer equations (23 and 24) for
Re > 20000 may be obtained by substituting
the expressions given below in equation (22).
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(i) (tw — 1B)

q 1 {145 = 0
= 45Cp ;'{‘:TN’"

{1 + Npp (5/14-5)F

X 410 s (5774-5) o Ny (5]TA 5

(V3 tan-t |
14+ 5'_64NPr
1+ 0-041Npy
from equations (13, 14)

V3
4+ 5In

yT=33 1
(u)j 2UZdZ¢J 2UZ4Z = 1.
0

yt=R*
Where
yt=R+tatZ=0

y=atZ=1— o .

=
@[

te(rt /8)

_2vun) r‘f“" (1-2)

2UZ dZ

R+

100

(55 + 25 ImyH)dy+

2V(//2)

AL [55 . 20t

T2RT
+ 250yt —y*)
2:5 ,+12 +12\ T R*/5
28 (0T - UT)]
100

Where

Z =1— y*/R* dy*

dZ=- %=
U=V(f/D)(55+25Iny*)
(iV) I — tym
g 25 { + Nel V(S /2)/5]}
ApCp " u* |2+ Nefv/(f[2)/5]
100 - (2:5/Npy)
33 (25/Npr)

X In

from equation (16)

M Us=+/(f[2)(55+2:5In100) =17+/(f]2)

Npe’? (10/14-5) — ] " m/3

vi) j:s 2UZ dZ

0

r‘a 2z [:—: — 72 /(f)2) z2] dz

0-8

Uo a .
(22 -3 vum 2]
+ 064 + 124 /(f]2)

where
Up
U=——T2+/(f[2) 22
up
and

—°=1+425\/(f/2)

y+=100
(vii) j

*e(R*/5)

2072 dZ

f (R*s +
=3 Loo [55+2:5In y*2 [1 - J%]d}’*
=72£ [30 +_15_()’i)f+ 1375
[y+ In y+ — y+]
1375 (42 O*P
- R+ { 2 y+ - T}
+ 625 {(y—)z (In y+ }
- (In y*) — 2p+In y+ 4 2p+
OB O e O i)
}Rﬂs
-8

4
(viii) J 20224z

_ L 2 [:‘Z —72 \/(f/z)zzruz
=[(&) =

121D 2 20

-8
+ 864 fz«]0
(/]
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where
201 4 4253 D).
b

By substituting these values in equation (22) and
taking out as common factor

q 1 ) 1
ApCp w112
the final equation Ns; = (f/2)/pu is obtained.

APPENDIX III
For the range 20000 > Ng. = 4500,
R*[5 < 100 so that the logarithmic regions
disappear completely and the following equation
replaces equations (22)

(tw — th)

" .;_0

=1, QUZ (tw — YdZ + (tw — tB)
JY =33

ryt=33

X | 2UZ dZ

vy =R*

fy*33

+ 2UZ (tg — NdAZ + (ts — t¢)
JRrYs

fRY/5

X M

R

PRYIS

-+ UZ (tc — ndZ

J 100

("100

+ n- QUZ (tar — 1) dZ + (t¢ — 1ar)

2UZ dZ

(100

X r 2UZ dZ.

As the first term is no longer negligible, the first
two terms together are taken as equal to
(tw — tp) to give the same first term as in equa-
tion (22). The region 33 = y*+ > 100 still has a
negligible effect. The fourth term is evaluated as
in Appendix 1I, but it should be noted that this
term only exists if R=/5 > 33. The fifth, sixth
and seventh terms are evaluated by substituting
the relevant functions given below.

H. W. KROPHOLLER AND A. D. CARR

q

(tc—0 = ApCp (u*)2 (u—

l - (G/E)
and in the central parabolic region
ear == Ru*/14-4
ajexr = 28-8/[Npe( f/2)]

q

S IR A

— uyg)

tc -tym

.9 1! e b
= 4pCp Gty T O LSRN D]
q 1004*

= nch e 02 [064 ( &)
and the remainder of thesc terms was evaluated
as in Appendix II.

APPENDIX 1V
The requirement of constant flux was made
because a heat balance to any distance Z from
the centre of the tube gives for equation (2)

1 g | jfuzdz

T A oCp  Z (29)

(
(ear a)

for constant flux and

) ¢
(sH—,La)?t & 1

_ G L f‘2UZ(Iw —nNdZ
&y A pCp o

Z(tw — ta)
(30)

for constant wall temperature.

Therefore only for constant flux is ¢g/¢A ==g/A
and also cquation (30) cannot be solved directly
as the variables are not separable.

This is not a serious limitation as heat transfer
coefficients for constant flux and constant wall
temperature are the same for Npr > 0-5 [5]. For
lower values of Npr theoretical considerations
[4, 6] have indicated that the transfer co-
efficients differ slightly in the two cases but
experimental confirmation is inadequate [6].

Résumé—Les auteurs proposent un medéle simple pcur le transpert de masse cu de chaleur, fcndé
sur une forme modifiée de ’analc gie de Reynolds. 1ls établissent des équations rerr.ettant de calculer,
pour n'importe quelle valeur de Np, ou Ng,, les coefficients de transport de masse et de chaleur et les
profils de température et de concentration. Pour établir ces équations, ils supposent: 1° que, dans
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1a conduite, le mécanisme de transport est tel qu’il n’y a pas de transport moléculaire appréciable dans
le noyau turbulent, méme aux bas nombres de Prandtl et 2° que le transport tourbillonnaire est uni-
quement fonction du type d’écoulement. L’équation est de la forme

Ng: (ou Ngn) = f:(/;

@ est donné a la fois sous forme analytique et sous forme graphique en fonction de Np, (ou Ni.),
pour des conduites lisses.

Les calculs de N'w, et les profils de températures sont en bon accord avec les données expérimentales.
Une attention particuliére est portée sur les résultats aux bas nombres de Prandtl ol les hypothéses faites
quant au transport dans le noyaun turbulent sont les plus valables; dans cette région, les équations pro-
posées sont mieux vérifiées par les résultats expérimentaux que les autres relations. Dans le dcmaine
intermédiaire de nombres de Prandtl ou de Schmidt, les équations proposées sont en bon accord avec
les autres analyses et pour les valeurs élevées de Ng., les équations se réduisent a celles de Lin et autres

[1] qui sont en excellent accord avec les données expérimentales,

Zusammenfassung—Fiir den turbulenten Wirme- und Stofftransport wird mit einer modifizierten
Form der Reyncldsanalogie ein einfaches Modell vorgeschlagen. Danach atgeleitete Gleichungen
liefern Warme- bzw. Stoffiibergangskoeffizienten und Temperatur- bzw. Konzentrationsprofile fiir
beliebige Werte von Pr bzw. Sc. In der Ableitung wird angenommen:

(1) der Transportmechanismus der Rohrstrémung verhilt sich so, dass kein wesentlicher Molekular-
transport im turbulenten Kern auftritt, selbst bei kleinen Pr;
(2) der Wirbeltransport ist nur eine Funktion des Stromungsprofils.

Die Gleichung hat die Form
St (bzw. Sk =12
K4

wobei @ sowohl algebraisch wie auch als Kurve ¢ iiber Pr (bzw. Sc) fiir glatte Rohre gegeben ist.
Berechnungen von Nu’ und Temperaturprofilen stimmen gut mit Versuchswerten iiberein. Besondere

Sorgfalt wurde zur Berechnung bei kleinen Pr aufgewendet, da hier obige Annahmen fiir den Transport

im turbulenten Kern von grosstem Einfluss sind. In diesem Bereich geben die vcrgeschlagenen

Gleichungen besser als andere Korrelationen experimentelle Ergebnisse wieder. In einem Zwischen-

bereich von Pr bzw. Sc kongruieren die Gleichungen gut mit anderen Analysen; bei hohen Werten von

Sc reduzieren sich die Gleichungen auf jene von Lin und anderen [1], die mit Versuchswerten bestens

{ibereinstimmen.

Apnoramug—IIpegnaraerca mpocrad Mopenb TypOYNEHTHOTO TeIIO-WAM Maccoobmena,
OCHOBAHHAA Ha MOxMQUUUpOBAHHON anasoruu Pelnouppca. (G moMouipo BHBEJEHHHIX
YpaBHEHMH MOMHO ONpeleduTs HKOSQQUUUEHTH TemI0-u MaccooGMeHa, npoduiaM Temme-
paTyphl B KOHUeHTpaumuu npu mo0om 3Havenun Np, umum Ng.. Ilpu BuBoge ypasmemusa
TIPeNIONIATaeTCA, 4T0 B TYPOYISHTHOM sppe NOTOKA He NPOMCXOXUT BHAYMTENIHLHOTO MOJEeKy-
JAPHOTO TMePeHoca Aake NpH HeGonpUIoM 3HaYeHUU Np,, B 4TO NepeHOC BUXpell NpeAcTaBaseT
co0oft yHKIMIO TOJTBRO KAPTHHH NOTOKA, YpaBHEeHHE MMEeT eNeRYOmul Bua:
Nsi (nim Ngp) = 12
¥
THe  ONpexesisieTcA Kak anre6pauvecky, Tak M [OCTPoeHHeM rpadmyeckoll saBHCHMOCTH ¢
o7 Np, (nxu Ng.) paa raagkux Tpyso.

Brruncnenna N'yu U TeMIOEPATYPHHX npoduireil XOPOIIO COrTaCYOTCA ¢ DHCHEPUMEHTAIb-
HEIMM JaHHkIMM. Boapmoe BHHMaHme yHelAeTCA De3yJjbTaTaM NpH HeOOILIIOM 3HAYEHMN
Npy B IPEANONIOKEHNM, YTO NepeHOC B TyplyneHTHOM sAppe umeer Hanboublunit agdexr. B
210} 0671aCTH BKCTIEPUMEHTATIBHEIE PeBYILTATH (07168 TOUHO ONpPEeIAIOTCH NPeAJIOHE I HEIMM
YpaBHeHUAMH, YeM JPYTHMHM COOTHOIIGHHAMH. B npoMerkyTouHOM AuanasoHe Np, win Nse
HPeNJIOKEHHEe YPABHEHNA COTIACYIOTCA C APYTHMH QHATIMBAMHE, 8 IpH GONBLIINX BHAYEHUAX
Nse oTH ypaBHeHUA CBOJATCA K ypasHenuaM Jlusa m apyrux [1], xoropme maxomatca B

TOJIHOM COOTBETCTBHM ¢ DHCHEPUMEHTANLHBIMH JAaHHBIMU.
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